การออกแบบและพัฒนาอุปกรณ์สำหรับผู้ป่วยโรคหลอดเลือดสมอง
by บรรยงค์ รุ่งเรืองด้วยบุญ; ศุภชัย วรพจน์พิศุทธิ์; จาตุรงค์ ตันติบัณฑิต
การออกแบบและพัฒนาอุปกรณ์สำหรับผู้ป่วยโรคหลอดเลือดสมอง | |
The Design and Development of Device for Stroke | |
บรรยงค์ รุ่งเรืองด้วยบุญ
ศุภชัย วรพจน์พิศุทธิ์ จาตุรงค์ ตันติบัณฑิต |
|
สำนักงานศูนย์วิจัยและให้คำปรึกษาแห่งมหาวิทยาลัยธรรมศาสตร์ | |
2013 | |
สำนักงานศูนย์วิจัยและให้คำปรึกษาแห่งมหาวิทยาลัยธรรมศาสตร์ | |
In it is the leading cause of death and the second leading cause of adult disability. We have to pay over 20 billion Baht a year for stroke-related medical costs and disability. Stroke rehabilitation should be started as quickly as possible and done consistently. Because of the lack of physical therapist and rehabilitation machines, daily rehabilitation exercises are rarely successful. Therefore, the simple designed machine with required less physical therapist is considerably needed. There are two main objectives of this research plan. First plan is to design and develop the gait training machine for stroke patients. Second plan is to develop the tool that can measure blood flow velocities in brain arteries. It can be used to detect emboli in cerebral circulation for stroke warning. The main objective of first research is to design and develop the gait training machine for stroke patients. The machine is composed of two parts that are the elliptical part and the body weight support part. The elliptical part is used to control the speed of patient’s step. It can be set the speed from 0 – 60 step/minute. For the body weight support part, the weight support can be adjusted from 25 – 87 kg. Also the second prototype is stronger than the first prototype. From the testing of the gait training machine, the machine has been tested with twelve stroke patients. The results show a good potential to improve the patient’s walking. Most of them can walk faster, longer with more stable than before using the machine. For the second research, Transcranial Doppler Ultrasound (TCD), a non-invasive approach to measure blood flow velocities in brain arteries, can be used to detect emboli in cerebral circulation. Classification of the measured TCD as an embolic signal (ES) or artifact is usually performed by a well-trained physician. However, human error and inter-rater reliability among physicians are unavoidable issues. As a result, an automatic ES detection system is undoubtedly useful as a medical support system. Therefore, we developed a fast and accurate automatic embolic signal detection algorithm using the adaptive wavelet packet transform (AWPT) for feature extractions and adaptive neuro-fuzzy inference system (ANFIS) for signal classifications. The subtractive clustering method was applied to significantly reduce the processing time (99.1% for training and 70.2% for classification) compared with grid clustering and can reduce the processing time when compared with fuzzy C-mean (FCM) clustering (34% for training and 18.2% for classification), while still achieving an impressive detection accuracy with 94.4% and 94.2% in sensitivity and specificity, respectively. These suggested that the algorithm could be used as a medical support system. |
|
ออกแบบและพัฒนาอุปกรณ์
ผู้ป่วยโรคหลอดเลือดสมอง |
|
บทความ | |
Text | |
application/pdf | |
tha | |
เอกสารฉบับนี้สงวนสิทธิ์โดยสำนักงานศูนย์วิจัยและให้คำปรึกษาแห่งมหาวิทยาลัยธรรมศาสตร์ ห้ามทำซ้ำ คัดลอก หรือนำไปเผยแพร่ตัดต่อโดยมิได้รับอนุญาตเป็นลายลักษณ์อักษร | |
สงวนสิทธิ์ในการเข้าถึงเฉพาะบุคลากรของมหาวิทยาลัยธรรมศาสตร์ | |
สำนักงานคณะกรรมการวิจัยแห่งชาติ (วช.) | |
https://repository.turac.tu.ac.th/handle/6626133120/76 |
This item appears in the following Collection(s) |
|
Collections
|